I like to ride bikes, I like to watch the pros race their bikes, and I make forecasts for a living, so I thought it would be fun to try to predict the outcome of this year’s Tour de France, which starts this Saturday and ends on July 26. I’m also interested in continuing to explore the predictive power of pairwise wiki surveys, a crowdsourcing tool that I’ve previously used to try to forecast mass-killing onsets, coup attempts, and pro football games, and that ESPN recently used to rank NBA draft prospects.

So, a couple of weeks ago, I used All Our Ideas to create a survey that asks, “Which rider is more likely to win the 2015 Tour de France?” I seeded the survey with the names of 11 riders—the 10 seen by bookmakers at Paddy Power as the most likely winners, plus Peter Sagan because he’s fun to watch—posted a link to the survey on Tumblr, and trolled for respondents on Twitter and Facebook. The survey got off to a slow start, but then someone posted a link to it in the r/cycling subreddit, and the votes came pouring in. As of this afternoon, the survey had garnered more than 4,000 votes in 181 unique user sessions that came from five continents (see the map below). The crowd also added a handful of other riders to the set under consideration, bringing the list up to 16.

So how does that self-selected crowd handicap the race? The dot plot below shows the riders in descending order by their survey scores, which range from 0 to 100 and indicate the probability that that rider would beat a randomly chosen other rider for a randomly chosen respondent. In contrast to Paddy Power, which currently shows Chris Froome as the clear favorite and gives Nairo Quintana a slight edge over Alberto Contador, this survey sees Contador as the most likely winner (survey score of 90), followed closely by Froome (87) and a little further by Quintana (80). Both sources put Vincenzo Nibali as fourth likeliest (73) and Tejay van Garderen (65) and Thibaut Pinot (51) in the next two spots, although Paddy Power has them in the opposite order. Below that, the distances between riders’ chances get smaller, but the wiki survey’s results still approximate the handicapping of the real-money markets pretty well.

There are at least a couple of ways to try to squeeze some meaning out those scores. One is to read the chart as a predicted finishing order for the 16 riders listed. That’s useful for something like a bike race, where we—well, some of us, anyway—care not only who wins, but also where other will riders finish, too.

We can also try to convert those scores to predicted probabilities of winning. The chart below shows what happens when we do that by dividing each rider’s score by the sum of all scores and then multiplying the result by 100. The probabilities this produces are all pretty low and more tightly bunched than seems reasonable, but I’m not sure how else to do this conversion. I tried squaring and cubing the scores; the results came closer to what the betting-market odds suggest are the “right” values, but I couldn’t think of a principled reason to do that, so I’m not showing those here. If you know a better way to get from those model scores to well-calibrated win probabilities, please let me know in the comments.

So that’s what the survey says. After the Tour concludes in a few weeks, I’ll report back on how the survey’s predictions fared. Meanwhile, here’s wishing the athletes a crash–, injury–, and drug–free tour. Judging by the other big races I’ve seen so far this year, it should be a great one to watch.